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Abstract

Nyström method is developed to solve for boundary integral equations (BIE’s) for elastic wave scattering by three-
dimensional obstacles. To generate the matrix equation from a BIE, Nyström method applies a quadrature rule to the inte-
grations of smooth integrands over a discretized element directly and chooses the values of the unknown function at quad-
rature points as the system’s unknowns to be solved. This leads to a simple procedure to form the off-diagonal entries of
matrix by simply evaluating the integrands without numerical integrations. For the diagonal or near diagonal entries cor-
responding to the integrals over a singular or near-singular element where the kernels are singular or near singular, we
develop a systematic singularity treatment technique, known as the local correction scheme, based on the linear approx-
imation of elements. The scheme differs from the singularity regularization or subtraction technique used in the boundary
element method (BEM). It applies the series expansion of scalar Green’s function to the kernels and derives analytical solu-
tions for the strongly singular integrals under the Cauchy principal value like (CPV-like) sense. Since the approach avoids
the need for reformulating the BIE for singularity removal in BEM and solves for the Somigliana’s equation directly, it is
easy to implement and efficient in calculation. Numerical examples are used to demonstrate its robustness.
� 2007 Elsevier Inc. All rights reserved.
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1. Introduction

The study of the radiation and scattering of elastic wave forms the basis of solution for many physical
problems in the realm of elastodynamics such as the dynamic stress concentration, nondestructive testing
for materials and earth-structure interaction in an earthquake induced wave environment. These studies
usually require solving the wave equations which can be in the form of partial differential equation
(PDE) or boundary integral equation (BIE) using numerical procedures. Although the direct solution for
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the PDE has been a good approach due to its simplicity [1–4], the BIE is more desirably solved in many
applications and has received extensive research attention [5–9]. The general BIE for the elastic wave scat-
tering takes the form of the Somigliana’s formula and it is usually treated as the starting point for the solu-
tion procedure [8,9].

BEM may be the most widely used numerical tool in solving elastic wave BIE’s [10–13]. It is a well-estab-
lished numerical method and is attractive because it reduces the dimensionality of problems if compared with
the finite element method (FEM) or the finite difference method (FDM). BEM discretizes the boundary of a
source domain and generates an algebraic matrix equation by the collocation method. The key problem in
BEM is the accurate numerical integration for the singular integral kernels. For elastic wave scattering prob-
lems, the integral kernels in the Somigliana’s formula are the Stokes displacement tensor and traction tensor
and they are singular over a singular element. The special singularity treatment technique known as the sin-
gularity regularization or singularity subtraction has been developed to remove the singularities in the numer-
ical integrations [11]. The technique usually requires reformulating the original Somigliana’s equation into a
nonsingular or weakly singular form. This obviously increases the complexity in implementation and compu-
tational cost in the solving process.

Nyström method was proposed by Nyström [14] and has become an efficient numerical tool in solving inte-
gral equations. This method has been introduced in electromagnetics and received much interest [15–17], but
has not yet been used in elastodynamics according to our search. The most distinct feature of this method is
that it directly evaluates the integrands under a given quadrature rule to generate most matrix entries corre-
sponding to the far interactions between field points and source points after discretizing the integral equation.
This is because Nyström method wisely selects the values of the unknown function at quadrature points as the
system’s unknowns to be solved, and also performs the collocation over those quadrature points. The corre-
sponding entries of coefficient matrix are just the evaluation of the integral kernels times the weights of the
quadrature rule. The key problem in the method is also the manipulation of the singular kernels over the sin-
gular or near-singular elements. These elements include the self or near interactions between field points and
source points and correspond to the diagonal or near diagonal entries in the matrix.

We developed a systematic singularity treatment technique for those self or near interaction terms in the
matrix. Such a technique is recognized as the local correction scheme in electromagnetics [15]. Unlike the reg-
ularization or subtraction technique in BEM, our local correction is based on the Somigliana’s equation with-
out the need of reformulation. We apply the series expansion of scalar Green’s functions to the integral kernels
and remove the fictitious Oð1=r3Þ and Oð1=r4Þ singularities in the kernels by cancelling the leading terms,
where r is the distance between a field point and a source point. The resultant kernels only have Oð1=rÞ
and Oð1=r2Þ singularities. The Oð1=rÞ singularity can be easily handled numerically by using regularization
technique, or equivalently Duffy’s method [18]. The strong singularity of Oð1=r2Þ type is manipulated under
CPV-like sense and we derive the analytical solutions for such singular integrals over a flat triangular element.
Due to the concise numerical procedure in generation of coefficient matrix, the Nyström method is simple to
implement and efficient in calculation. We present several numerical examples to illustrate the process.

2. Boundary integral equation

Consider the elastic wave scattering problem as shown in Fig. 1, where an elastic obstacle V2 bounded with
S is embedded in an infinite elastic medium V1. The corresponding parameters of the media are (k2,l2,q2) for
V2 and (k1,l1,q1) for V1 where k and l are Lamé constants and q is the mass density of the medium. The inci-
dent wave is a time–harmonic plane wave propagating along �x3 direction in V1 and impinging upon the
obstacle, yielding the scattered wave in V1. The BIE for this problem can be derived from the governing
PDE of wave propagation in a homogeneous medium [19]
ðkþ lÞrr � uþ lr2uþ x2u ¼ �qf ð1Þ
where u is the displacement vector, f is the body force and x is the angular frequency. Morse and Feshbach
first derived a generalized BIE from the PDE of Holmholtz type by using Huygens’ equivalence principle [20].
Pao and Varatharajulu formed the BIE for the elastic wave scattering from (1) in a similar way [19]
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Fig. 1. Elastic wave scattering by an obstacle embedded in an infinite elastic medium.
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where t is the traction vector which can be related to u by Hooke’s law, G is the dyadic Green’s function given
by
G ¼ 1

l
Iþrr

j2
s

� �
gsðx; x0Þ �

1

c
rr
j2

c

gcðx; x0Þ ð3Þ
and Rðx; x0Þ is a third-rank Green’s tensor with R‘mn ¼ kd‘mokGkn þ lðo‘Gmn þ omG‘nÞ in indicial notation. In
(3), gs ¼ eijsr=4pr and gc ¼ eijcr=4pr are the scalar Green’s functions in free space with r = |x � x 0| being the
distance between the field point x and the source point x 0. The subscript s denotes the shear wave and c de-
notes the compressional wave. The corresponding wave numbers are given by j2

s ¼ x2q=l and j2
c ¼ x2q=c

with c = k + 2l. In addition, the superscript I in (2) denotes an incident wave, single bar over a vector denotes
a dyad, double bars over a vector denote a third-rank tensor and I stands for the identity dyad in (2) and (3).

Eq. (2) is actually the same as the Somigliana’s identity [8]
CTðxÞuðxÞ ¼
Z

S
½UTðx; x0Þtðx0Þ � TTðx; x0Þuðx0Þ�dS0 þ uIðxÞ ð4Þ
by identifying the Stokes displacement and traction tensors U ¼ G and T ¼ n̂0 � R. In (4), the superscript T
denotes the transpose and CðxÞ is a tensor which takes the identity dyad for x in V1, 0 for x in V2, and a real
function of the geometry of S in the vicinity of x for x on S. If the geometry is smooth at x, then CðxÞ ¼ I=2.
The Stokes tensors can be expressed in an indicial notation [8]
U ij ¼ ðGÞij ¼
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n o
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on
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where dij is the Kronecker delta, oir = or/oxi, ojr = or/oxj, and
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C ¼ Xs eijsr � Xc eijcr

D ¼ ðijsr � 1Þeijsr � ðijcr � 1Þeijcr

F ¼ Hc eijcr � H s eijsr
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cr2
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cr2 þ ij3

cr3

ð6Þ
The Stokes tensors are smooth for far-interaction terms and the related integrals can be performed directly
using numerical integrations. However, they possess fictitious Oð1=r3Þ and Oð1=r4Þ singularities on singular
elements and the numerical integrations cannot be applied directly. If we expand the scalar Green’s function
gs and gc in (3) into a series form
gðx; x0Þ ¼ eikr

r
¼
X1
m¼0

ðijÞmrm�1

m!
�
XM

m¼0

ðijÞmrm�1

m!
ð7Þ
then the fictitious singularities can be removed by cancelling the leading terms in G and the Stokes tensors
become
Uij �
1
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In the new form of the Stokes tensors, the Oð1=rÞ singularity in Uij can be handled using the regularization
technique in BEM, or equivalently the Duffy’s method [18] in electromagnetics. The Oð1=r2Þ singularity in
Tij is handled using the subtraction technique in BEM, but we derive closed-form formulas in a CPV-like
sense. Since the new form of the Stokes tensors is only applied to the singular or near-singular elements where
r is small, the series converges fast and the number of truncated terms M is small.

If we incorporate boundary conditions which are the continuity of displacement and traction vectors u and
t on S, the BIE’s in indicial notation can be written as
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ð10Þ
on which the numerical procedure is based. The superscripts on the Stokes tensors denote the media and we
choose the field point x on a smooth surface leading to the coefficient of dij/2 in front of ui(x). If the obstacle is
a traction-free cavity or a fixed rigid inclusion, the above BIE’s can be simplified by enforcing t = 0 or u = 0
on S.

3. Nyström method

In BIE, when we transform the integral equation into a matrix equation after discretizing the geometry, we
usually express the unknown function into interpolation functions with unknown coefficients. Replacing the
unknown function with such an expression leads to the integration of the kernels with the interpolation func-
tions for each matrix entry. The interpolation functions are chosen as shape functions of an element in an
isoparametric scheme and the unknown coefficients are the system’s unknowns to be solved. Nyström method
uses a different strategy to generate the matrix entries. If the integral kernels are smooth over an element,
Nyström method replaces the integral with a summation under a quadrature rule, i.e.
Z

DS
f ðx0ÞdS0 ¼

XP

j¼1

wjf ðx0jÞ ð11Þ
where f(x) is a general smooth function, P is the number of quadrature points and wj is the jth weight over the
surface element DS which can be a triangle, square, or circle, etc. We usually use the non-product quadrature
rule instead of product or repeated quadrature rule for a surface integral because the non-product rule has less
quadrature points. The typical non-product rules are the Gauss–Legendre rule with one, three or six quadra-
ture points over a flat triangle [21]. Nyström method wisely selects the values of unknown function at
quadrature points as the unknowns of the matrix equation and the matrix entries are just the direct evaluation
of integral kernels times the weights of the quadrature rule. Consider a generalized 3D BIE
Z

S
F ðx; x0Þuðx0ÞdS0 ¼ �/ðxÞ x 2 S ð12Þ
where F ðx; x0Þ is the integral kernel related to the scalar Green’s functions, u(x 0) is the unknown function, say
the component of displacement vector, and /(x) represents the excitation (incident wave). After discretizing
the surface S into N patches and applying the quadrature rule in (11), the BIE becomes
XN

i¼1

XP i

j¼1

wijF ðx; x0ijÞuðx0ijÞ ¼ �/ðxÞ ð13Þ
where Pi is the number of quadrature points at the ith element and wij represents the weight of the quadrature
rule on the jth point of the ith element. Performing the collocation procedure on these quadrature points yields
the following matrix equation
XN

i¼1

XP i

j¼1

wijF ðxmn; x
0
ijÞuðx0ijÞ ¼ �/ðxmnÞ ð14Þ
where m ¼ 1; 2; . . . ;N and n ¼ 1; 2; . . . ; P m. We can see that the whole process is very simple because it avoids
the need of interpolations and numerical integrations. Since the integrands are usually smooth for far-inter-
action elements, the matrix entries corresponding to these elements can be created in such a way. This will
greatly facilitate the implementation and save on matrix-filling time. For singular or near-singular elements,
the integrands are singular or badly behaved and the quadrature rule in (11) cannot be applied directly. A
special treatment called local correction is needed to generate those diagonal or near diagonal entries. The
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local correction is actually a singularity manipulation technique and very similar to the procedure in BEM.
The difference is that we interpolate the unknown function over a singular element based on the values of un-
known function at quadrature points and we have developed analytical solutions for the resultant strongly
singular integrals under a CPV-like sense.

4. Strongly singular integrals

Since the weakly singular integrals with Oð1=rÞ singularity can be handled by regularization technique or
Duffy’s method, we will not discuss them here. We focus on those strongly singular integrals with Oð1=r2Þ sin-
gularity. These integrals are handled using the singularity subtraction technique in BIE, but we derive the
closed-form expressions here. If we combine the interpolation function with the integral kernel Tij in (8),
the strongly singular integrals are the following terms in Tij
Fig. 2.
w! 0
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1
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or
oxi
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or
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or
on

ð15Þ
The resultant integrals take the following forms in a global coordinate system ðx1; x2; x3Þ:
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ð16Þ
We create a local coordinate system ðu; v;wÞ over the singular element as shown in Fig. 2. The transformation
relation between the global and local coordinate system is
)0,,( 111 vup

)0,,( 222 vup

)0,,( 333 vup
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Local coordinate system over a singular element. The field point is initially located at (0,0,w) and approaches the element with
.
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where ð‘1;m1; n1Þ; ð‘2;m2; n2Þ and ð‘3;m3; n3Þ are the direction cosines of three local coordinate axes in the
global coordinate system and ðu0; v0;w0Þ is the coordinates of the local coordinate system’s origin in the global
coordinate system. In this local coordinate system, those strongly singular integrals can be expressed as
Ik ¼ að1Þk I ð3Þu þ að2Þk I ð3Þv for k ¼ 1; 2; 3;

Ik ¼ að3Þk I ð5Þu þ að4Þk I ð5Þuv þ að5Þk I ð5Þvu þ að6Þk I ð5Þv for k ¼ 4; . . . ; 13
ð18Þ
where
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u02v0
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u0v02

r5
dS0; I ð5Þv ¼

Z
DS

v03

r5
dS0

ð19Þ
and aðiÞk ði ¼ 1; . . . ; 6Þ are the constants related to the direction cosines. The integrals in (19) are strongly sin-
gular and the accurate evaluation for them is the key part of our approach. We evaluate these integrals under a
CPV-like sense, i.e., we assume that the field point is initially off the singular element with a vertical distance of
w from the singular element plane. After deriving the analytical solution for those integrals with w 6¼ 0 under
the polar coordinate system as shown in Fig. 2, we take the limit of w! 0 to find the exact solutions for the
integrals in (19). The final results can be found in the Appendix.

5. Numerical results

Several numerical examples are presented to demonstrate the validity of the Nyström method. The
one-point quadrature rule which corresponds to a constant approximation for the unknown function over
an element is used in all cases. The higher-order quadrature rules corresponding to a higher-order interpola-
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tion for the unknown function can be used in a straightforward way. This is because the strongest singularity
comes from the constant term of the interpolation function. The higher-order terms of interpolation functions
will weaken the degree of singularity when exerting on the kernels and the resultant integrals can all be han-
dled numerically. The tangential component in the following denotes the h component in all cases.

We first consider the scattering by a fixed rigid sphere with a radius of a = 1.0. The surrounding medium
has Poisson’s ratio m = 0.25 and mass density q = 1.0. The incident wave is a time–harmonic plane dilatational
wave with a unit circular frequency (x = 1.0) and normalized wave number of jca = 0.125, 0.913 and p,
respectively. We use 360, 960 and 960 triangle elements, respectively, in the discretization of the geometry
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for these wave numbers. The meshes are over fine for the jca = 0.125 and 0.913 cases (small and middle sizes)
because we want to show more points on the curves. Figs. 3–5 show the total radial and tangential compo-
nents of traction along the principal cut (/ = 0� and h = 0�–180�) at the surface. It can be seen that the solu-
tions agree with the analytical solutions very well. The analytical solutions can be found in [22–24].

We next consider the scattering by a traction-free spherical cavity surrounded by an infinite elastic medium.
The cavity also has a radius of a = 1.0 and the surrounding medium is characterized by Poisson’s ratio m = 1/3,
Young’s modulus E = 2/3 and mass density q = 1.0. The incident wave is the same as before but the normalized
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Fig. 8. Total radial traction and displacement along the elevated cut at the surface of an elastic sphere, kca = 0.125.
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wave numbers are chosen as jca = 0.09 and 0.913 corresponding to 360 and 960 triangle meshes in the discret-
ization, respectively. Figs. 6 and 7 show the scattered radial and tangential displacements along the principal
cut at r = 5a. The solutions are also compared with the analytical solutions and they are very close to each other.

We finally consider the generalized case with both the surrounding medium and obstacle being elastic. We
select k1 = 0.53486, l1 = 0.23077 and q1 = 1.0 for the surrounding medium, and k2 = 0.23716, l2 = 0.52641
and q2 = 1.9852 for the elastic spherical obstacle with a unit radius. The incident wave is also the same as
before but the normalized wave numbers are chosen as jca = 0.125, 2.0 and 5.0, respectively. Figs. 8–10 plot
the total radial components of displacement and traction at the surface along the principal cut. These results,
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Fig. 9. Total radial traction and displacement along the elevated cut at the surface of an elastic sphere, kca = 2.0.
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obtained using 360, 960 and 960 elements, respectively, are again in excellent agreement with the analytical
solutions. Note that jca = 4.4934 is a wave number close to the fictitious eigenfrequency in this case and it
is hard to obtain a good result using the traditional BEM [25]. To get rid of the resonance problem, one usu-
ally needs to reformulate the integral equation and a higher cost is required in the solution process. However,
like the method of fundamental solution (MFS) [26], our Nyström method solution does not sharply worsen
near the fictitious eigenfrequency when solving the original equation. The results using 960 elements are still
good enough as shown in Fig. 11. The insensitiveness of eigenfrequency may allow the method to be a good
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Fig. 11. Scattered displacement of an elastic sphere along the principal cut at the surface, kca = 4.4934.
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choice in seeking numerical solutions. Therefore, this method does not remove the internal resonance prob-
lem, but make the solution robust close to the resonance frequency.

6. Conclusion

Nyström method was originally designed for solving integral equations with smooth kernels. The singular
feature of the Green’s function in BIE’s has prevented it from being exploited for a long time. It has not been
used as a numerical tool until the robust local correction schemes are developed. In this work, we have developed
a local correction scheme for solving elastic wave scattering problems. This scheme differs from the singularity
treatment technique in BEM and it is simpler to implement. We apply the series expression of the scalar Green’s
functions to the Stokes tensors and cancel the fictitious higher-order singular terms. The remaining Oð1=rÞ sin-
gularity can be easily handled numerically, but the Oð1=r2Þ singularity are performed analytically under a CPV-
like sense. This approach avoids the need to reformulate the Somigliana’s equation when kernels are singular
and also avoids the need for numerical integrations when kernels are smooth. The simplified singularity treat-
ment technique, together with the simpler process of generating the nonsingular entries of matrix, constitutes the
main attractiveness of this method. The method is only implemented in linear elements (flat triangles) currently.
We will consider the higher-order approximation of elements for curvilinear geometry in the future.
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Appendix. Analytical solutions for the strongly singular integrals in (19)

In the polar coordinate system as shown in Fig. 2, we divide the triangle element into three sub-triangles
DSi ði ¼ 1; 2; 3Þ by connecting the origin to the three vertices of the triangle element. Each sub-triangle is spec-
ified by four parameters di

0, hi
0, hi

1 and hi
2. Here, di

0 is the vertical distance OOi between the origin and the ith
side of the triangle element, hi

0 is the angle of OOi, and hi
k (k = 1,2) are the angles of connecting lines from the

origin to the two end points of the ith side, respectively. With the aid of formulas in [27], those integrals can be
derived as follows:
I ð3Þu ¼
Z

DS

u0

r3
dS0 ¼

X3

i¼1

sin hi
2 � sin hi

1

� 	
ln di

0

� 	
� Ia cos hi
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0


 �
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Z

DS

v0

r3
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X3

i¼1

cos hi
1 � cos hi

2

� 	
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� 	
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0


 �
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Z
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u03
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2 � sin hi
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ðA:1Þ
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where
Ia ¼
1

2
½b1ðln b1 � 1Þ � a1ðln a1 � 1Þ � b2ðln b2 � 1Þ þ a2ðln a2 � 1Þ�

Ib ¼ b0ð1� ln b0Þ � a0ð1� ln a0Þ
IA ¼ 0:5ðIa � Ip þ Iq þ Ir � I sÞ
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